
SynZK Hub — Zero-Knowledge Action &
Synchronization Layer

Whitepaper • Version 1.3 (Detailed • Compact Layout)

Abstract
SynZK Hub is a privacy-first action layer that enables verifiable, privacy-preserving operations across multiple blockchains. This
compact full-length edition retains the depth of v1.1 while significantly reducing whitespace. It covers formal action definitions,
circuit composition and versioning, hybrid proving systems and aggregation, cross-chain verification, private EVM rollup design,
economic incentives, security model, attestations, performance targets, SDKs, and governance.

Table of Contents
1 Problem Statement & Goals 2

2 System Model & Terminology 3

3 Protocol Overview 4

4 ZK Action Layer (Circuits, Proof Modules) 6

5 Proof Systems & Aggregation 9

6 Sync Engine & Cross-Chain Verification 11

7 SynZK Rollup (Private EVM) 13

8 Wallet / Identity & Account Abstraction 15

9 ZK-AI Connector 16

10 Economic Design & Token ($SYNZK) 18

11 Validator/Relayer Roles & Slashing 21

12 Security Model, Threats, & Audits 23

13 Compliance-Friendly Privacy (Attestations) 25

14 Performance & Benchmarks (Targets) 26

15 SDKs & Reference Interfaces 28

16 Deployment, Upgrades, & Governance 31

17 Roadmap & Testnet Plan 33

18 Risk Disclosures 34

19 Glossary 35

1. Problem Statement & Goals
Public blockchains expose transaction metadata (sender, amounts, counterparts), enabling unwanted profiling and MEV. Existing
privacy systems often silo assets, require heavy UX, or lack cross-chain verification. SynZK Hub aims to make private actions
composable and verifiable on any chain without trusted bridges.

• Privacy by default with cryptographic correctness; reveal only what must be verified.
• Composable with DeFi, NFTs, governance, and agent systems via modular proof modules.
• Cross-chain by design using proof-of-validity and canonical adapters, not trusted multisigs.

• Predictable fees and developer-first SDKs; explicit circuit registry and versioning.
• Upgrade paths anchored by semantic compatibility hashes and DAO governance.

2. System Model & Terminology
We consider users, DApps, agents, relayers, provers, verifiers and settlement chains.

Formalization (informal):
- intent I: public statement (dst, asset, class of op, limits, deadline)
- constraints C: predicates over I (policy proofs, rate limits, allowlists)
- witness W: private inputs (amounts, secrets, attributes, randomness)
- circuit F: verifies (I, C, W) ⇒ True
- proof π = Prove(F, (I, C), W); Verify(F, (I, C), π) ⇒ True

3. Protocol Overview
• Build intent I; choose module set M from registry.
• Generate proofs π■ per module; optionally aggregate to Π.
• Verify Π on source chain; emit commitment event.
• Sync Engine relays (domain_src, domain_dst, intent_hash, Π, nonce, expiry).
• Destination verifier checks Π; state transition executes; receipts returned.

4. ZK Action Layer (Circuits, Proof Modules)
Proof Modules encapsulate circuits+verifiers with metadata for safe composition. Selectors compose modules; a semantic hash
ensures compatibility. Developers publish modules to a registry with fees and versioning governed by the DAO.

Field Description

module_id Unique identifier in registry

semver x.y.z; major bumps deploy new verifier

compat_hash Hash of semantic signature (inputs/outputs/constraints)

verifier On-chain address implementing Verify(intent, proof)

params Curve/SRS commitments; domain separators; aux data

Composition

Selector S builds composite constraints S(M1..Mk).
Aggregate proof Π proves all Mi hold for the same intent I.
Adapters expose a uniform Verify(I, Π) to destination chains.

Features
• Circuit registry & versioning; semantic checks at compose-time.
• Confidential amounts and shielded addresses built-in.
• Batch/recursive aggregation to reduce verification cost.
• Deterministic verifiers with on-chain selectors.

5. Proof Systems & Aggregation
We target a hybrid approach: zk-SNARKs for efficiency and zk-STARKs for transparent setup. Aggregation via recursion, batch
verification, or pairing multi-proof.

Aspect SNARK STARK

Setup Structured (SRS) Transparent

Proof size Small Larger

Verifier cost Low Moderate

Latency Low Moderate

Security DL assumptions Hash-based (FRI)

Aggregation & Targets
• Proof size: ≤ 50–150 kB aggregated • EVM verification: ≤ 250k–600k gas • Throughput: ≥ 100 actions/s with pooled proving on
GPU clusters.

6. Sync Engine & Cross-Chain Verification
The Sync Engine is a stateless relayer set with staking, slashing, and reputation. Safety stems from on-chain verification; liveness
from redundancy. Replay protection uses nonces and domain separators; time-boxed expiries bound message validity.

Message m := (domain_src, domain_dst, intent_hash, Π, nonce, expiry)
- Nonce/domain prevent cross-replay
- Expiry bounds message validity

- Destination verifier checks Π against registered module set
• No trusted multisigs; proof-of-validity on destination chain.
• Optional light-clients for finality; challenge windows for optimistic parts.
• Relayer staking with slashing for malformed messages or equivocation.

7. SynZK Rollup (Private EVM)
A private EVM-compatible rollup executes shielded transactions and commits state roots to settlement chains. ZK■WASM
adapters support non■EVM circuits. MEV is reduced via encrypted mempool and batch sequencing.

State Model

State = (Accounts, Notes, Nullifiers)
Spend: proves ownership of notes and outputs new commitments.
Nullifier set prevents double-spends; commitments hide amounts/owners.

8. Wallet / Identity & Account Abstraction
SynZK Wallet SDK issues ephemeral identities bound to ZK policies. Account Abstraction (4337-style) enables batched actions
and sponsored fees.

• Ephemeral keys with user-defined linkability windows.
• Rate-limit and compliance proofs without revealing PII.
• Plugins for MPC/HW wallets/guardians; social recovery via threshold proofs.

9. ZK-AI Connector
Agents commit to plan hashes and provide policy-compliance proofs (e.g., asset lists, VaR bounds) while keeping
prompts/weights private. The connector mediates intent generation and on-chain verification.

Agent Flow:
1) Compute plan P; publish h = H(P)
2) Produce policy proof π_policy (e.g., VaR ≤ τ, whitelisted assets)
3) Submit (h, π_policy, intent I) → Verify → Execute

10. Economic Design & Token ($SYNZK)
$SYNZK powers fees, staking, governance, and rewards. Fees include proof-generation subsidy pools, verification gas, and
relayer tips.

Fee Model (illustrative)

User fee f = α·v + β·g + γ·p
v: value class; g: on-chain verify gas; p: proving units
(α,β,γ) set by DAO per module tier.

Allocation (illustrative)
Category Share Vesting

Community & Rewards 35% 48m emission

Core Contributors 20% 48m linear, 12m cliff

Ecosystem Fund 20% DAO grants

Investors/Backers 15% 36m linear

Treasury & Liquidity 10% DAO governed

Incentives
• Relayer/Prover staking yields funded by fees.
• Module authors share registry revenue (per-call split).
• Slashing funds redistributed to honest actors.

11. Validator/Relayer Roles & Slashing
Relayers/provers stake $SYNZK; misbehavior (malformed messages, equivocation, SLA breaches) is penalized with graduated
slashes.

Slashing (examples):
- Malformed message / invalid Π → σ1
- Double-relay conflicting payloads → σ2
- Downtime > δ (SLA violation) → σ3
Evidence on-chain enables trustless challenges.

12. Security Model, Threats, & Audits
Layered defenses across circuits, verifiers, relayers, and rollup logic. Independent audits, continuous verification pipelines, public
bug bounty.

Threat Vector Mitigation

Circuit bug Constraint omission Formal specs, audits, test vectors

Replay Cross-domain reuse Nonce + domain separators

Forgery Weak params Modern ZK assumptions; parameter hygiene

MEV leakage Order leakage Encrypted mempool; batch sequencing

Relayer collusion Censorship Multiple relayers; liveness penalties

13. Compliance-Friendly Privacy (Attestations)
Anonymous credentials (e.g., BBS+) let issuers provide attestations proven in ZK (age ≥ threshold, region whitelists, sanctions
exclusion). No PII on-chain.

14. Performance & Benchmarks (Targets)
Metric Target (Testnet)

Proof generation (single action) < 500 ms (GPU) / < 2 s (CPU)

Aggregated verification gas (EVM) ≤ 400k for 4 actions

Relayer end■to■end latency < 5 s cross■chain (optimistic)

Rollup throughput ≥ 50 TPS private transfers (batch)

15. SDKs & Reference Interfaces
// TypeScript SDK (illustrative)
const intent: Intent = {
 op: "swap", dst: "0xTokenB", chainDst: "base",
 amountClass: "≤1000_USD_equiv", deadline: now()+300
}
const modules = [confAmount(), rateLimit(1000), kycRegion("allowed")]
const Π = await client.prove(intent, modules)
await client.submit(intent, Π, { dstChain: "base" })

// Solidity (illustrative)
interface IVerifier {
 function verify(bytes calldata intent, bytes calldata proof) external view returns (bool);
}
contract Selector {
 function verify(bytes calldata intent, bytes calldata aggProof) external view returns (bool) {
 // dispatch aggregated proof Π to module verifiers
 }
}

16. Deployment, Upgrades, & Governance
Deploy on Sepolia, BSC Testnet, Base Sepolia, Polygon Amoy, Solana devnet. Upgrades use semver with on-chain registry.
Governance: token-holder DAO with security council for emergency patches and parameter freezes.

17. Roadmap & Testnet Plan
• T-0: Circuit registry + two modules (conf. transfer, rate-limit).
• T-1: Aggregation + Selector; EVM verifier adapters.
• T-2: Sync Engine relayer set (staking + minimal slashing).
• T-3: Private rollup MVP; encrypted mempool; batch proving.
• T-4: Wallet SDK alpha; ZK-AI connector POC.
• T-5: Public testnet incentives, audits, security competitions.

18. Risk Disclosures
Cryptographic systems carry inherent risks, including novel attack vectors. Economic parameters are illustrative and may change
via DAO governance. This document is not financial advice and does not constitute an offer of securities.

19. Glossary
Action, Aggregation, Attestation, Circuit, Intent, Nullifier, Proof Module, Selector, Verifier, ZK■WASM.

© 2025 SynZK Hub — All rights reserved.

